NON-FINANCIAL RISK ANALYSIS &

MACROECONOMIC FACTORS

CCP CHAPTER 10B PART 2

S Why is Research on NFR & Macroeconomy Difficult?

Not all NFR events have clear macroeconomic linkages –

Some occur randomly 📉 .

Time-lag issue – Economic downturns today may cause

frauds to surface years later.

Banks focus on evidence-based NFR events, ignoring

those without clear macroeconomic proof 🥝.

What happens?

During economic upswings, banks approve high-risk

loans with minimal scrutiny.

- Fraudulent loans get approved alongside legitimate ones
- <u>.</u>

• Compliance teams become **overly optimistic**, reducing suspicion.

Impact?

When economy crashes, fraudulent loans default,

causing massive financial losses.

2 Intense Market Competition Lowers Risk Standards

- Banks compete aggressively for lending business in .
- Stringent loan checks are bypassed to gain market share.
- Collateral fraud becomes rampant as due diligence

declines.

Impact?

Fraudulent lending increases, leading to higher NPA
 (Non-Performing Assets) post-crisis

 .

3 Fraud Goes Undetected Until Economy Crashes

What happens?

Fraud remains hidden as long as obligations are met.

During an economic downturn, fraudsters fail to repay loans.

Uncovered frauds create huge financial damage

4 Unemployment & Financial Desperation Lead to More Fraud

📌 What happens?

- During recessions, unemployment rises sharply
- People commit fraud to sustain their lifestyle or out of

desperation.

The belief that "I won't get caught" becomes stronger.

Impact?

Rise in banking frauds, cyber crimes, and financial misconduct.

5 Heavy Workloads in Booming Economies Cause More

Errors

📌 What happens?

- High credit demand = Overburdened banking staff in .
- Mistakes increase due to fatigue & pressure.
- Errors of omission (missing due diligence) lead to

financial risks later.

Impact?

Operational risks rise as mistakes accumulate over time.

℅ Summary Table: How Macroeconomic Conditions

Affect NFR?

Macroeconomic	Primary NFR Risk	Effect 🔛
Factor 📊		
Economic Boom 🚀	Rogue Lending &	Banks approve risky
	Fraud 📈	loans, increasing fraud
		risk.
Intense Market	Collateral Fraud &	Loan scrutiny weakens,
Competition 물	Loan Default	leading to higher NPA .
Economic Downturn	Fraud Detection	Hidden frauds surface,
**	Surge 崔	causing huge financial
		losses.
High Unemployment	Employee Fraud	Financial desperation

1	1	drives people to commit
		fraud.
Heavy Workload	Operational	Increased pressure
	Errors 🛑	causes more process
		failures.

℅ Common NFR-Loss-Estimation Approaches

Most banks estimate NFR losses during their annual

budgeting and forecasting processes 📊 . This is typically

done by:

✓ Using historical loss data 📜

✓ Incorporating management inputs at a business-line level

✓ Employing different models for specific event types (e.g., fraud, litigation).

• Advanced banks combine historical data and forwardlooking analysis, to improve stress-testing accuracy.

• Some banks rely solely on historical averages, but this is

a **backward-looking approach** \times that does not account for future risks.

☆ Q NFR-Loss-Estimation Models

Comparison of NFR Loss Estimation Approaches

Approach	Methodology 📊	Advantages	Challenges 🗙
		\checkmark	
Regression	Statistical models	Identifies	🗙 Not all NFR
Models 📉	predicting NFR	correlations	losses correlate
	frequency &	between	with
	severity based on	economic	macroeconomic
	macroeconomic	conditions &	conditions.
	trends.	NFR losses.	
Loss-	Uses historical loss	8	X Requires
Distribution	data & Monte	Incorporates	extensive
Approach	Carlo simulations	both	historical loss
(LDA) 📊	to estimate NFR	frequency &	data.
	loss distribution.	severity of	
		losses.	
Scenario	Experts assess	🎯 Helps	X Subjective –
Analysis 🔍	plausible severe	capture	depends on
	NFR events &	unknown risks	expert judgment.
	their impact.	& data gaps.	
Historical	Uses past loss data	🏦 Simple &	🗙 Does not
Averages	to predict future	easy to apply.	account for

	losses.		future risks or
			evolving threats.
Legal	Separates legal	▲ Provides	🗙 Highly
Exposures	losses (lawsuits,	detailed legal	unpredictable
\$'\$	settlements) from	risk insights.	due to evolving
	operational losses.		regulations.

Regression Models

📌 What is it?

Regression models estimate two key variables:

- 1 Loss Frequency How often NFR losses occur.
- 2 Loss Severity The financial impact of these losses.

How does it work?

✓ Banks use regression models to identify correlations between macroeconomic factors (e.g., GDP growth, interest

rates) and NFR loss frequency.

✓ Time-lag assumptions are applied to adjust for delayed impacts.

✓ If no correlation is found, **alternative models** are used.

📌 Challenges:

X Most banks struggle to correlate macroeconomic conditions with NFR loss severity.

X They often **use static assumptions** (e.g., 4-quarter moving average) to estimate **operational losses**.

Modified Loss-Distribution Approach (LDA)

📌 What is it?

✓ A statistical method used in the Advanced Measurement Approach (AMA) to estimate Value-at-Risk (VaR) for NFR losses.

✓ Uses historical loss data & probability distributions for risk estimation.

How does it work?

Two key distributions are estimated:

✓ Loss Frequency Distribution – How often NFR events occur.

✓ Loss Severity Distribution – How costly each event is.

• These distributions are **combined using Monte Carlo**

simulations is to estimate the annual NFR loss probability.

📌 Key Benefits:

Helps banks **quantify** potential **loss exposure**.

Useful for regulatory capital calculation

Challenges:

🗙 Requires extensive historical data 📜

X Results can be highly sensitive to model assumptions.

Scenario Analysis

📌 What is it?

✓ A structured process where risk-management experts assess the likelihood & impact of severe NFR events.

How does it work?

✓ Banks simulate hypothetical scenarios (e.g., cyberattack, major fraud event) & estimate potential losses.

✓ Used as a management overlay to complement datadriven models.

Helps **identify unknown risks** where historical data is lacking.

Captures **idiosyncratic risks** (specific to a bank or event type).

Challenges:

Requires **transparent**, **well-supported methodology** for credibility.

✓ Banks use **past loss data** to estimate future NFR losses.

How does it work?

✓ Historical averages are applied where no macroeconomic

correlation exists.

✓ Can be used **alone or in combination** with other models.

📌 Key Benefits:

- 🗹 Simple & easy to implement 🏦 .
- 🗹 Useful when data is limited.
- Challenges:

X Backward-looking approach – ignores emerging risks.

X Requires careful **adjustment for outliers & anomalies**.

Legal Exposures

Banks **separate legal losses** (lawsuits, settlements) from other NFR losses.

📌 How does it work?

✓ Legal reserves, historical loss data, and regression models help predict future litigation losses.

✓ Some banks use hazard-rate models 11 to estimate

default & repurchase claim rates.

Key Benefits:

Provides a clearer picture of legal risk exposure.

Helps banks allocate reserves for future legal liabilities.

+ Challenges:

X Legal risks are **highly unpredictable**.

X Regulatory changes can **invalidate historical loss patterns**.

℅ Dealing with Recoveries

📌 What are Recoveries?

✓ Recoveries refer to funds recovered after NFR losses,

beyond insurance claims.

✓ The net financial damage after deducting recoveries is the final NFR loss.

Key Considerations for Banks:

✓ Estimate the **probability & timing** of recoveries under

adverse economic conditions 📉.

✓ Ensure capital reserves are adequate to cover expected losses.

Best Practices for Banks:

- Maintain accurate recovery records.
- Align recovery projections with macroeconomic trends.

Consider delays in settlement processes when

forecasting losses.

℅ Sinal Summary Table: NFR Loss Estimation &

Recoveries

Aspect 💼	Key Details 🔊
Common NFR Loss	Regression Models, LDA, Scenario Analysis,
Estimation Methods	Historical Averages, Legal Exposure
	Models.
Most Advanced	Loss-Distribution Approach (LDA) using
Approach	Monte Carlo Simulations 🞲 .
Easiest to Implement	Historical Averages 📜
Best for Unknown Risks	Scenario Analysis 🔍 .
Legal Risk Consideration	Separate models for litigation &
Legal Risk Consideration	Separate models for litigation & regulatory losses ቆዄ.
Legal Risk Consideration Handling Recoveries	Separate models for litigation & regulatory losses 책. Estimate realistic recovery timelines & net