

For CCP Full Course Whatsapp at 8460944207

PROJECT APPRAISAL/TERM LOAN APPRAISAL

11.4 Capital Budgeting

- Capital budgeting is the process that companies use to evaluate and select long-term investment projects, such as purchasing new machinery, expanding operations, or launching new products.
- It involves assessing potential expenditures that require significant capital outlays and determining their profitability and feasibility over time.

Time Value of Money - Discounting Technique

Money today is worth more than the same amount in the future.

A rupee today can be invested to earn interest, making it more valuable than a rupee received later. Capital budgeting techniques must consider the time

value of money to make accurate investment decisions.

Key Concepts: Time Value of Money

📜 Concept	Definition	
Future Value (FV)	Value of money at a future date.	
Present Value (PV)	Value today of a future cash flow.	
Miscounting	Converts future money into its present value.	
Discount Factor	A multiplier used to find PV from FV.	
(DF)		

℅ 11.4.1 Payback Period Method

Measures the time required to recover the initial

investment.

Formula:

Payback Period = Initial Investment / Annual Cash

Inflow

Shorter payback period = Better project

***** Example 1:

A project with an initial investment of ₹1,000 lakh has the

following cash inflows:

	Annual Cash Inflow	📊 Cumulative Cash Inflow
Year	(₹ lakh)	(₹ lakh)
1	100	100
2	150	250
3	250	500

EARNING SESSIONS

Mail: <u>banishagupta2099@gmail.com</u> Website: <u>https://iibf.info/iibfLearning</u>

4	300	800
5	200	1000
6	200	1200

Example 2: Comparing Two Projects

	I Project A (Cash Flow ₹	I Project B (Cash Flow ₹
Year	lakh)	lakh)
1	200	100
2	300	200
3	500	200
4	Nil	300
5	Nil	200
6	Nil	250
7	Nil	200
8	Nil	150

Payback Period:

- Project A: 3 Years (Shorter Payback Period)
- Project B: 5 Years (Longer Payback, but earns beyond

payback period) 🗹

Limitations of Payback Period Method:

X Ignores cash flows after payback period.

X Does not consider the time value of money.

CASE STUDY

Company A is evaluating two potential projects, Project X and Project Y, using the Payback Period Method. The details are as follows: **Project X.**

- Initial Investment: \$150,000
- Annual Cash Inflow: \$30,000

Project Y:

- Initial Investment: \$200,000
- Annual Cash Inflow: \$50,000

Which project would be selected, and what is the payback period for the chosen project?

ACCOUNTING RATE OF RETURN METHOD (ARR)

- It calculates the average annual profit generated by the project as a percentage of the initial investment.
- The ARR method provides a simple measure of

profitability by comparing the average annual profit to the initial investment.

• It does not consider the time value of money or the

project's cash flows beyond the average annual profit.

Investment Decision

Under this method, a project will be accepted if its

Accounting Rate of Return is higher than the Minimum rate

of return set by the management.

📌 Example: Comparing Three Projects

	📊 Net Operating	📈 Original	🚺 ARR
Project	Profit (₹ lakh)	Investment (₹ lakh)	(%)
Project A	300	2,000	15%
Project B	300	2,000	15%

Project C	300	2,000	15%

ARR is the same for all projects despite different cash

flow distributions.

ARR does not consider the timing of cash inflows.

A Company purchases a machine of 100000 having life of 5 years. It

is expected that it will generate profit as follows: calculate Average

rate of return.

Year	Profit After Tax
1	40000
2	30000
3	50000
4	25000
a) 25.25 %	
b) 30.25%	
c) 32.25%	
d) 36.25%	

SOLUTION

$$ARR = \frac{Average \text{ profit after tax}}{Initial Investment}$$

Net Present Value (NPV) Method

NPV helps evaluate investment decisions by considering

the time value of money.

Cash flows are discounted to their present value using a

predetermined discount rate.

NPV Formula:

I NPV = Σ (Cash Flow at Year t / (1 + Discount Rate)^t) -

Initial Investment

Where:

Cash Flow at Year t = Net cash inflow or outflow in year t

Discount Rate = Expected return or cost of capital

t = Time period (years)

Decision Rule:

- NPV > 0: Accept the project (Profitable)
- NPV = 0: Break-even (No loss, no gain)
- NPV < 0: Reject the project (Loss-making) X</p>

A company purchases a machine it will cost 20000 and will produce a cash inflow of 7000 ,7500,8000 for next 3 years. What is the NPV if he discounts rate is 10%?

Solution

LEARNING

No. of years	Cash	PVIF 1/(1+i) ⁿ (Y)		P. V(X*Y)	
	Inflow(X)				
0	20000	1	-	-	-20000
1	7000	1	1	0.909	6363
		$(1+0.10)^1$	1.10		
2	7500	1	1	0.826	6195
		$(1+0.10)^2$	1.21		
3	8000	1	1	0.751	6008
		$(1+0.10)^3$	1.33		

NPV = Sum of (Present Value of Cash Flow) - Initial Investment

A manufacturing company is considering investing in new machinery. The cost of the machinery is 600,000, and it is expected to generate cash inflows of 200,000 per year for the next 5 years. The company's required rate of return is 12%. Calculate the NPV of the investment and advise the company on whether it should proceed with the purchase.

- a) 119696
- b) 120569
- c) 125364
- d) 124536

Solution

Present value =
$$C\left[\frac{(1+r)^n - 1}{r(1+r)^n}\right]$$

NPV = Sum of (Present Value of Cash Flow) - Initial Investment

Limitations of NPV Method

X NPV cannot compare projects with different investment amounts.

X Difficult to estimate future cash flows accurately.

X Discount rate selection impacts NPV calculations.

Profitability Index (PI) – Adjusted NPV Comparison

 PI solves the limitation of NPV when comparing projects of different sizes.

✓ Formula:

I PI = Present Value of Cash Inflows / Present Value of

Cash Outflows

- If PI > 1 → The project is profitable (Accept).
- If PI < 1 → The project loses value (Reject).

Example: Comparing Projects X & Y Using PI

📃 Factor	🚺 Project X (₹	🚺 Project Y (₹
	lakh)	lakh)
Present Value of	-5,000	-10,000
Investment		
Present Value of Cash	6,000	11,000
Inflows	-	
Net Present Value	1,000	1,000
(NPV)		
Profitability Index (PI)	6,000 ÷ 5,000 =	11,000 ÷ 10,000 =
	1.20 🗹	1.10 🗙

Project X has a higher PI (1.20 vs. 1.10), so it is the

better investment. 🔽

LEARNING

SESSIONS

NPV & Profitability Index

📌 Metric	🔽 Key Takeaways	🏦 Example

🚺 Net	Measures absolute	Project A NPV =
Present Value	profitability of an	₹2,595, so it's viable.
(NPV)	investment.	
	Measures relative	Project X (PI = 1.20) is
Profitability	profitability when	better than Project Y
Index (PI)	comparing projects of	(PI = 1.10).
/	different sizes.	
▲ NPV	Cannot compare	Two projects with
Limitation	projec <mark>ts with d</mark> ifferent	equal NPV may have
	invest <mark>ment</mark> outlays.	d <mark>ifferent inv</mark> estment
		sizes.
K Impact of	Earlier cash inflows	Pr <mark>oject</mark> A earns more
Timing on NPV	increase NPV.	in early years, so it has
		a higher NPV.
Discount	Higher discount rates	A 15% discount rate
Rate	lower NPV.	reduces future cash
Sensitivity		values more than 10%.

Benefit-Cost Ratio (BCR)

BCR compares the total benefits of a project against its

total costs, both discounted to present value.

Higher BCR = Better investment.

BCR > 1 \rightarrow The project is **profitable** (benefits exceed costs) \rightarrow

Accept

BCR < 1 \rightarrow The project is **not viable** (costs exceed benefits) \rightarrow

Reject

📌 Formula:

BCR = Present Value of Benefits (PVB) / Initial

Investment (I)

Net Benefit-Cost Ratio (NBCR) = (PVB - Initial

Investment) / Initial Investment

Decision Rule:

- 📊 BCR 🗹 Decision
- > 1 Accept (Profitable) 🔽
- = 1 Indifferent 📊
- < 1 Reject (Loss-making) 🗙

📌 Example:

A project with **₹1,00,000 initial investment** yields benefits:

	💰 Benefit	😽 Discount Factor	Discounted
Year	(₹)	(12%)	Benefit (₹)
1	25,000	0.893	22,325
2	40,000	0.797	31,880
3	40,000	0.712	28,480
4	50,000	0.636	31,800

SOLUTION

LEARNING

BCR = Present Value of Benefits (PVB) / Initial

Investment (

Net Benefit-Cost Ratio (NBCR) = (PVB - Initial

Investment) / Initial Investment

Since **BCR > 1**, the project is **profitable**.

☆ 11.4.6 Data Needed for NPV & IRR Calculation

To compute NPV & IRR, the following data is required:

📃 Factor

Key Considerations

III Life of the Project

Estimated economic lifespan.

📃 Factor	Key Considerations
Cash Outflows	Initial investment, capital & working
	capital costs.
🚧 Cash Inflows	Expected revenue & cost savings.
Residual Value	Salvage value at project end.
😽 Net Cash Receipts	Cash inflows minus outflows.
🚺 Discount Rate (Cut-off	Minimum acceptable return or cost of
Rate)	capital.
★ Life of the Project	

- 🖌 Determined by:
- Physical life (wear & tear).
- Technological obsolescence.
- Market demand changes.

📌 Typical project lifespans:

Lange Industry	Project Life (Years)
Manufacturing	12-15
IT & Electronics	5-10

Hotel Industry	25+
Infrastructure (Dams, Roads, etc.)	40-50

Cash Outflows & Working Capital Needs

- Includes both fixed & operational costs:
- Fixed Costs: Land, buildings, machinery
- Working Capital: Inventory, salaries, utilities
- ***** Implementation Period:
- Year 0 = Construction phase (No revenue).
- Revenue starts post-implementation.

Cash Inflows & Residual Value

- Cash inflows = Revenue + Cost Savings.
- Residual value = Asset value at project end.
- Net Cash Receipts & IRR Calculation

INTERNAL RATE OF RETURN METHOD

Internal Rate of Return **represents the discount rate** at which the net present value (NPV) of an investment becomes zero.

- The IRR method considers the time value of money by discounting future cash flows to their present value.
- If the IRR is greater than the cost of capital, then the project should be undertaken otherwise not.

$$IRR = r_a + \frac{NPV_a}{NPV_a - NPV_b} (r_b - r_a)$$

Explanation

FSS

r_a=Lower discount rate

r_b=higher discount rate

NPV_a=NPV at lower discount rate

NPV_b=NPV at higher discount rate

Q:1 A company invests in Infrastructure Project and its Net

present value at 10% is 50000 and 12% (-)20000. calculate

IRR for this project.

Solution

 $r_a = 10 \%$ $r_b = 12 \%$ NPV_a = 50000 NPV_b = -25000

$$IRR = r_a + \frac{NPV_a}{NPV_a - NPV_b} (r_b - r_a) = 10 + \frac{50000}{50000 - (-20000)} (12 - 10) + \frac{1000}{1000} (12 - 10) +$$

10)

$$IRR = 10 + \frac{50000}{70000}(2), = 10 + 1.42 = 11.42\%$$

RBI Guidelines for Financing Infrastructure Projects

Infrastructure lending refers to credit facilities extended
by banks & financial institutions to finance projects in
government-notified infrastructure sub-sectors.

RBI guidelines ensure structured financing & risk
management in these projects.

***** Key Components of Infrastructure Financing:

- Project Viability Assessment
- Risk Management & Due Diligence 1
- Special Purpose Vehicles (SPVs) for Private Sector

Projects

- Consortium Lending & Syndicated Loans
- Take-Out Financing for Asset-Liability Management

Criteria for Financing Infrastructure Projects

Banks & Financial Institutions (FIs) can finance projects

that are:

- Technically Feasible Image: A search of the s
- Financially Viable
- 🔹 Bankable & Low-Risk 🗹

Key RBI Conditions:

Condition	Requirement
1 Prudential	Loans must comply with RBI's exposure limits
Exposure Norms	for infrastructure financing.
🚺 Expertise in	Banks/FIs must have specialized teams for
Project Appraisal	evaluating technical feasibility & risk
	assessment.
[Lending to	Banks can lend to Special Purpose Vehicles
SPVs	(SPVs) in the private sector if they are:

 \checkmark

- Legally registered under the Companies Act 📜
- Undertaking financially viable infrastructure projects
- Not acting as financial intermediaries 🚫 |

Infrastructure Project Appraisal

Banks & FIs must conduct a comprehensive due

diligence process before financing infrastructure projects.

+	Kev	Areas	of Δr	nraisal	•
/	NEY	AICas		ipi aisai	•

📜 Aspect	Evaluation Criteria
📈 Viability	Ensuring revenue generation covers
Assessment	financing costs.
A Risk Mitigation	Identifying & managing project risks
	(construction delays, cost overruns,
	regulatory hurdles).
🔀 Role of State	State government guarantees cannot
Guarantees	replace thorough credit assessment.
SPV Financing	Assessing contractual obligations &
Considerations	creditworthiness of project sponsors.

🔝 Joint Financing &	Large projects often require multiple
Consortium Lending	banks/FIs to share risks.

***** SPV-Financed Projects: Special Considerations

SPVs reduce risks by separating project liabilities from

parent companies.

 Risk mitigation through contractual obligations of involved entities.

Take-Out Financing Arrangements

Take-out financing helps banks manage long-term infrastructure loans efficiently by transferring loan exposure to specialized financial institutions like IDFC or SBI.

This mechanism prevents asset-liability mismatches & liquidity issues.

Key Features of Take-Out Financing:	
📃 Feature	V Description

🔁 Loan Transfer	Banks agree to transfer loans after a
Agreement	pre-determined period.
🏦 Managed by	IDFC/SBI take over the loan, reducing
Institutions like IDFC &	bank exposure.
SBI	
📉 Reduces Risk for	Prevents long-term exposure
Banks	mismatches in infrastructure lending.
Model Agreement	SBI & IDFC provide a reference
for Banks	agreement template for take-out
	financing.

