CREDIT RISK ANALYTICS & CREDIT SCORING MODELS

CCP CHAPTER 12B

- **Core Functions of Banks & Associated Risks**The primary function of banks is to **accept deposits** and use them for **lending and investment**.
- ★ Key Risk Areas:
- ✓ Deposit Mobilization (Liability Creation) Prone to Non-Financial Risks (NFR) ⚠.
- ✓ Lending & Investment (Asset Creation) Exposed to Credit Risk & NFR ...

Types of Banking Loans

Loan Type	Borrowers 👥	Purpose &
Term Loans	Farmers, traders,	Used for long-term
	manufacturers,	asset creation.
	infrastructure providers	
Working	Traders, manufacturers,	Used for short-term
Capital	businesses	operational needs.
Loans 😉		
Retail Loans	Salaried professionals,	Used for home
<u>^</u>	individuals	purchases,

	education, personal
	expenses.

- ★ Types of Lending:
- ✓ Fund-Based Lending 🎳 Direct money disbursement (e.g., loans, overdrafts).
- ✓ Non-Fund-Based Lending → Contingent exposures (e.g., letters of credit, bank guarantees).
- Fanks use a Credit Conversion Factor (CCF) to estimate the probable actual credit exposure from non-fund-based lending.
- ★ Credit Risk in Banking
 What is Credit Risk?
- * Credit Risk refers to the possibility of a borrower failing to repay their obligations on time .
 - It applies to both lending and investments.
- It arises from defaults, credit concentration, counterparty risks, and poor loan assessment.
- Components of Credit Risk

Credit Risk Type	Description 🛃
\triangle	
Default Risk X	Probability of a borrower failing to meet
	loan repayment.

Portfolio Risk 📊	The overall risk in the bank's loan &
	investment portfolio.
Intrinsic Risk 🏦	Risk associated with a particular
	borrower or industry.
Concentration	Excessive exposure to a single borrower,
Risk 🎯	sector, or geography.
Counterparty Risk	Risk from non-performance of trading
3	partners in financial transactions.

External vs. Internal Factors Affecting Credit Risk

External Factors 😙	Internal Factors 📶	
Economic downturns	X Weak credit policies &	
	administration	
Commodity & equity	Inadequate credit risk	
price fluctuations	monitoring	
Interest rate Solution Over-reliance on colla		
movements	instead of repayment ability	
Foreign exchange	Poor financial assessment of	
fluctuations	borrowers	
○ Trade restrictions &	X Absence of loan review	
sanctions	mechanisms	

* Key Insight:

• A strong credit risk management framework should address both external and internal risks.

A well-structured credit risk management framework should cover:

- ✓ Risk Measurement iii Credit rating/scoring.
- ✓ Risk Quantification Estimating expected & unexpected loan losses.
- ✓ Risk Pricing

 Determining interest rates based on risk levels.

***** Governance:

- ✓ Banks should document their Credit Risk Management Policy.
- ✓ A high-level Credit Policy Committee should:
- Define credit approval standards & Loan terms and conditions
 - Establish delegation of credit authority.
 - Set prudential limits for risk exposure.
- * Key Instruments for Credit Risk Management
- **1 Credit Approving Authority**
- **★** What is it?
- ✓ Banks should establish a **well-defined delegation of credit approval powers**.

- ✓ Credit Committees should be set up at different operational levels.
- ✓ A Loan Review Mechanism (LRM) should evaluate credit quality within 3-6 months.

2 Prudential Limits

- ★ Why is it important?
- ✓ Prevents over-exposure to high-risk borrowers & sectors.

Types of Prudential Limits

Limit Type 12	Description 🔂	
Debt/Equity Ratio	Defines acceptable leverage levels.	
Limits 📊		
Single/Group Borrower	Prevents overexposure to one	
Limits 🚧	borrower or business group.	
Substantial Exposure	Caps total credit exposure beyond	
Limits 📉	a set percentage of capital funds.	
Industry/Sectoral Limits	Restricts loans to high-risk	
	industries (e.g., real estate,	
	equities).	
Loan Maturity Limits	Controls long-term exposure risks.	

- * Key Insight:
- Sector-specific caps ensure that banks are not overexposed to a single industry or borrower group.

3 Risk Rating System

- **♦** What is it?
- ✓ Banks must use **risk scoring/rating models** to evaluate **borrower creditworthiness**.
- ✓ Ratings should be **standardized across all borrowers**.
- ★ Why is it important?
- ✓ Helps determine loan pricing.
- ✓ Facilitates early warning signals 🕍 for potential defaults.
- ✓ Assists in **portfolio risk analysis** ii .
- Credit Risk Analytical Models
- ★ What are they?
- ✓ Mathematical models that quantify credit risk exposure & determine required economic capital.
- **Q** Comparison of Common Credit Risk Models

Model Type	Methodology 🔊	Application 🏦
Probability of Default (PD) Models	Estimate likelihood of borrower default.	Used for individual credit assessment.
Loss Given Default (LGD) Models	Estimate potential loss if default occurs.	Used to calculate risk-based capital requirements.

Monte Carlo	Runs multiple	Used for stress
Simulation 🕡	simulations to predict	testing & portfolio
	credit loss	analysis.
	distribution.	
Credit Scoring	Assigns scores based	Used for consumer
Models 🗐	on borrower	& SME loans.
	characteristics.	

📌 Key Insight:

- Advanced banks use a combination of models to ensure accurate risk estimation.
- **★ 12.2 Premises of Credit Risk Analytics**
- **t** Evolution of Credit Risk Analytics
- The Bank for International Settlements (BIS) has emphasized the need for rigorous credit risk assessment since the Basel-I framework.
- ★ Historically, credit risk assessment remained an academic concept rather than a practical tool for lenders.
- The 2008 Global Financial Crisis was a turning point, a massive credit defaults occurs worldwide.
- The crisis highlighted the contagion effect of credit risk across economies.
- This accelerated the development of advanced credit risk models ii.

Q Evolution of Credit Risk Models Post-2008

Era 🔀	Approach to Credit Risk	Challenges Faced ⚠
Pre-2008	Basic risk	Nisk models were not
	assessment using	forward-looking.
	historical data.	
2008 Global	Liquidity issues	X No strong
Crisis 🔵	triggered massive	mechanisms to predict
	credit defaults.	contagion risk.
Post-2008	Advanced credit	⚠ Over-reliance on
**	risk models using	historical data, which
	statistical analysis.	does not always predict
		future risks.
Present	Al-driven risk	Continuous evolution
(2020s &	analytics & real-	needed due to changing
beyond) 🚀	time credit	economic behaviors.
	monitoring.	

- Key Learning:
- Risk models must be forward-looking, as history often rhymes but never repeats itself.
- "Information asymmetry" remains a major challenge in predicting future credit risks.
- Role of Credit Risk Analytics
- ⋆ Objective:

- To differentiate borrowers & exposures based on their **Probability of Default (PD)**, **Loss Given Default (LGD)**, and **Exposure at Default (EAD)**.
- Key Metrics in Credit Risk Analytics:

Metric 📊	Definition 🗟	Formula 🔊
Probability of	Likelihood that a	Estimated using
Default (PD)	borrower will default	historical behavioral
*	on repayment.	patterns.
Loss Given	The percentage of	LGD = 1 - Recovery
Default (LGD)	total exposure lost if	Rate.
\$	default occurs.	
Exposure at	The total value of	EAD = Total Loan
Default (EAD)	outstanding	Amount
*	exposure at default.	Outstanding.
Expected Loss	The anticipated credit	EL = PD × LGD ×
(EL) 🔍	loss over a period.	EAD.

- * Key Insight:
- Credit risk analytics models must incorporate both
 historical data & future economic conditions to accurately
 predict credit risk exposure.
- 12.3 Advantages of Analytic Models
- Advantages of Modern Credit Risk Models

1 Structured &	Uses predefined parameters,	
Transparent	ensuring clarity & accuracy in	
	predictions.	
2 Mathematical	Leverages quantitative models like	
Precision 📊	probability theory for accurate	
	analysis.	
3 Easy Implementation	Widely available platforms (e.g.,	
	Excel, Python, SAS) enable quick	
	adoption.	
4 Fast & Accurate	Reduces delays & ambiguities,	
Decision-Making 🚀	ensuring precise risk assessment .	
5 Adapts to Digital	Supports big data analysis , aligning	
Economy (with modern financial behavior.	

📌 Key Learning:

- Credit risk analytics integrates **finance**, **economics**, **and data science**, making it a **multidisciplinary field**.
- **Lesson** Evolution of Risk Analytics: From Statistics to Big Data
- Traditionally, risk models were based on sample data &
 extrapolation
- Big Data & AI have transformed risk analysis, enabling real-time credit monitoring.
- Empirical analytics now replaces traditional statistical assumptions.

Traditional vs. Modern Credit Risk Analytics

Factor 📶	Traditional Credit	Modern Credit Risk
	Risk Analytics 🗏	Analytics 🔗
Data Source	Sample-based data	Big Data & real-
#		time analytics
Prediction	Historical	Al-driven predictive
Approach 🔍	extrapolation	modeling
Accuracy 6	Moderate – relies on	High – accounts for
	past trends	economic shifts
Scalability 📈	Limited scalability	Easily integrates
	, C	with digital finance

📌 Key Insight:

- Digitalization & Big Data have revolutionized credit risk analytics, making predictions more precise & adaptable.
- ★ Credit Risk Analytics Software & Tools
- Modern credit risk models rely on software tools for data processing, visualization, and forecasting

Q Comparison of Credit Risk Analytics Software

Software	Type 🔍	Key Features 🗹	Challenges X
SAS 🏦	Commercial	User-friendly,	Expensive 🐧
		widely used in	
		banking	

Python	Open-	AI & machine	Needs
Q	source	learning support	programming
			expertise 📜
R 🙀	Open-	Statistical	Requires
	source	computing &	technical
		visualization	expertise 확
Matlab	Commercial	Advanced	Costly for small
		mathematical	banks 🐧
		modeling	
EViews	Commercial	Time-series	Less flexible
		analysis for risk	than Python 🚀

📌 Key Learning:

- Banks must choose the right software based on data complexity, regulatory requirements, and cost factors.
- **★** 12.5 Credit Scoring Models: Advanced Risk Assessment in Banking
- Evolution of Credit Risk Modeling Under Basel II

 The Basel II framework defines three key approaches for calculating credit risk capital requirements:

Approach 🏦	Methodology 🔍	Key Features 🗹
Standardized	External credit rating	Uses predefined
Approach (SA)	agencies provide	PD values

11	ratings.	assigned to risk
		categories.
Foundation	Banks estimate PD	More flexibility
Internal Ratings-	but use regulatory	than SA, but still
Based (F-IRB)	estimates for other	constrained.
Approach 📜	parameters (LGD,	
	EAD, Maturity).	
Advanced	Banks estimate PD,	Provides
Internal Ratings-	LGD, EAD, and	maximum risk-
Based (A-IRB)	Maturity (M).	sensitive capital
Approach 🚀		requirement
		calculation.

- ***** Key Credit Risk Components in Scoring Models
- An ideal credit risk model should:
- ✓ Estimate **Probability of Default (PD)** 📉 .
- ✓ Determine Loss Given Default (LGD) 🎳 .
- ✓ Calculate Exposure at Default (EAD) ii .
- ✓ Compute **Effective Maturity (M)** <a>Image: Image Image
- ✓ Ensure regulatory compliance for capital requirements

- Six Stages of Credit Risk Scoring Models
- 1 Defining the Problem & Scope
- Why is it important?

- ✓ Credit scoring varies by borrower type a one-size-fits-all model doesn't work X.
- ✓ Banks must design separate scoring models for:

Segment 🏦	Borrower Type	Risk Factors
	22	Considered A
Corporate	Large	Financial ratios, cash
Lending 📳	companies,	flow, industry risk.
	institutions	
Retail Lending	Individuals,	Income stability, credit
	consumers	history, employment.
Microfinance 6	Small	Alternative credit data,
	businesses,	repayment behavior.
	MSMEs	
Infrastructure	Long-term	Government policies,
Lending 🍱	projects	execution risks.

2 Data Collection & Preprocessing

- **★** Data Sources for Credit Scoring Models:
- ✓ Internal Data Borrower's past repayment history, transaction behavior.
- ✓ Peer Data Similar businesses/individuals for comparative analysis.
- ✓ Industry Data Sector performance benchmarks & trends.
- ✓ Macroeconomic Data National/global indicators like GDP, inflation, interest rates.

✓ Alternative Data (Big Data) — Social media activity, payment platforms, utilities.

Data Structuring:

- ✓ **Vertically** Across **time series** (historical trends).
- √ Horizontally Across geographies & industries.
- ✓ Correlated Data Relating economic conditions to borrower behavior.

3 Developing the Analytical Model

- **★** What is a Credit Risk Model?
- ✓ A predefined framework that consistently assesses borrower risk.
- ✓ Uses **predictive analytics** to evaluate risk **over time**.

* Key Model Types:

Model Type 📊	Purpose 🂣	Application 🏦
Logistic	Predicts PD based	Used for scoring
Regression 💥	on historical default	retail & SME
	patterns.	loans.
Machine Learning	Identifies risk	Applied for real -
(AI-based models)	patterns using large-	time risk
	scale data.	monitoring.
Monte Carlo	Runs multiple	Used for
Simulations 🕡	simulations to	portfolio-level
	stress-test risk	risk evaluation.

levels.

4 Backtesting the Model

- ***** Objective:
- ✓ Ensure historical data aligns with model predictions.
- ✓ Compare model outputs with **known credit events**.
- **✓** Steps in Backtesting:
- 1 Select historical events where default outcomes are known.
- 2 Feed past data into the model.
- 3 Compare predicted vs. actual outcomes **ii**.
- 4 **Refine parameters** if deviations exist.
- **5 Stress Testing & Scenario Analysis**
- Why is this important?
- √ Tests model resilience under worst-case economic scenarios.
- √ Key Stress Scenarios:

Scenario 🗇	Possible Impact on Credit Risk
Economic Recession	Higher default rates , lower
*	repayment capacity.
Rising Interest Rates	Increased EMIs , lower loan
\$	affordability.
Stock Market Crash	Corporate defaults increase.

Pandemic-like	Mass unemployment, economic
Shocks 🖺	slowdown.

6 Regulatory Capital Calculation & Compliance

- Final Step:
- ✓ Ensure the model aligns with **Basel II/III capital adequacy** requirements

 .
- ✓ Integrate real-time updates for new central bank regulations.
- ✓ Modern Credit Risk Models Must:
- ✓ Automate end-to-end data processing & risk calculations

 .
- ✓ Allow seamless adaptation to regulatory changes

 .
- ✓ Provide **customized risk estimation tools** for dynamic risk assessment ...
- The Role of Fintech in Credit Risk Modeling
- How Banks are Leveraging Fintech?
- ✓ Some banks launch in-house Fintech startups 🚀.
- ✓ Others **partner with Fintech firms** *>>* to integrate Aldriven risk models.
- Technologies Used in Modern Credit Risk Modeling

Technology 📃	Application in Credit Scoring 📊
Python, R, SAS 🤨	Al-driven predictive analytics, big

	data processing.
Machine Learning	Identifies borrower patterns & fraud
(ML) 😇	detection.
Blockchain 🕺	Creates tamper-proof credit history.
Cloud Computing	Enables real-time credit risk
	evaluation.