CREDIT RISK ANALYTICS & CREDIT SCORING MODELS

CCP CHAPTER 13B PART 2

Core Functions of Banks & Associated Risks
The primary function of banks is to accept deposits and use them for lending and investment.

📌 Key Risk Areas:

✓ Deposit Mobilization (Liability Creation) – Prone to

Non-Financial Risks (NFR) A.

✓ Lending & Investment (Asset Creation) – Exposed to

Credit Risk & NFR 🚺 .

Types of Banking Loans

Loan Type	Borrowers	Purpose 🧭
Term Loans	Farmers, traders,	Used for long-term
	manufacturers,	asset creation.

	infrastructure	
	providers	
Working	Traders,	Used for short-term
Capital	manufacturers,	operational needs.
Loans 🖻	businesses	
Retail	Salaried professionals,	Used for home
Loans 🏠	individuals	purchases,
		education, personal
		expenses.

📌 Types of Lending:

(e.g., loans, overdrafts).

 ✓ Non-Fund-Based Lending → Contingent exposures
 (e.g., letters of credit, bank guarantees).

For Banks use a Credit Conversion Factor (CCF) to estimate the probable actual credit exposure from non-fund-based lending.

📌 🖸 Credit Risk in Banking

What is Credit Risk?

Credit Risk refers to the **possibility of a borrower**

failing to repay their obligations on time 📉.

- It applies to both **lending** and **investments**.
- It arises from defaults, credit concentration,

counterparty risks, and poor loan assessment.

Components of Credit Risk		
Credit Risk Type	Description 🛃	
Default Risk 🗙	Probability of a borrower failing to	
	meet loan repayment.	
Portfolio Risk 📘	The overall risk in the bank's loan &	
	investment portfolio.	
Intrinsic Risk 🏦	Risk associated with a particular	
	borrower or industry.	

Concentration	Excessive exposure to a single
Risk 🎯	borrower, sector, or geography.
Counterparty	Risk from non-performance of
Risk 🔄	trading partners in financial
	transactions.

📊 External vs. Internal Factors Affecting Credit Risk

External Factors 💮	Internal Factors 💼	
🔆 Economic	X Weak credit policies &	
downturns	administration	
Commodity &	📊 Inadequate credit risk	
equity price	monitoring	
fluctuations		
📈 Interest rate	Over-reliance on collateral	
movements	instead of repayment ability	
🔁 Foreign exchange	Poor financial assessment of	
fluctuations	borrowers	
O Trade restrictions &	X Absence of loan review	
sanctions	mechanisms	

📌 Key Insight:

• A strong credit risk management framework should address both external and internal risks.

Credit Risk Management Process
 A well-structured credit risk management framework
 should cover:

✓ Risk Measurement 📊 – Credit rating/scoring.

✓ Risk Quantification
 – Estimating expected &
 unexpected loan losses.

✓ Risk Pricing → Determining interest rates based on risk levels.

📌 Governance:

✓ Banks should document their Credit Risk Management
 Policy.

- ✓ A high-level Credit Policy Committee should:
 - Define credit approval standards & Loan terms and

conditions

- Establish **delegation of credit authority**.
- Set **prudential limits** for risk exposure.
- 📌 🛠 Key Instruments for Credit Risk Management

1 Credit Approving Authority

📌 What is it?

✓ Banks should establish a well-defined delegation of

credit approval powers.

✓ Credit Committees should be set up at different

operational levels.

✓ A Loan Review Mechanism (LRM) should evaluate credit quality within 3-6 months.

2 Prudential Limits

Why is it important?

✓ Prevents over-exposure to high-risk borrowers & sectors.

✤ Types of Prudential Limits

Limit Type 🔢	Description 📝	
Debt/Equity Ratio	Defines acceptable leverage	
Limits 🚺	levels.	
Single/Group Borrower	Prevents overexposure to one	
Limits 🚧	borrower or business group.	
Substantial Exposure	Caps total credit exposure	
Limits 📉	beyond a set percentage of capital	
	funds.	
Industry/Sectoral	Restricts loans to high-risk	
Limits 🔵	industries (e.g., real estate,	
	equities).	
Loan Maturity Limits	Controls long-term exposure	
	risks.	

Sector-specific caps ensure that banks are not

overexposed to a single industry or borrower group.

3 Risk Rating System

📌 What is it?

✓ Banks must use **risk scoring/rating models** to evaluate

borrower creditworthiness.

✓ Ratings should be **standardized across all borrowers**.

***** Why is it important?

✓ Helps determine **loan pricing**.

✓ Facilitates early warning signals ▲ for potential

defaults.

✓ Assists in **portfolio risk analysis [**].

🕙 📉 Credit Risk Analytical Models

***** What are they?

✓ Mathematical models that **quantify credit risk exposure**

& determine required economic capital.

Q Comparison of Common Credit Risk Models

Model Type	Methodology 🔗	Application 💼
Probability of	Estimate likelihood of	Used for individual
Default (PD)	borrower default.	credit assessment.
Models 📉		
Loss Given	Estimate potential	Used to calculate
Default (LGD)	loss if default occurs.	risk-based capital
Models 💰		requirements.
Monte Carlo	Runs multiple	Used for stress
Simulation	simulations to predict	testing & portfolio
ŵ	credit loss	analysis.
	distribution.	
Credit Scoring	Assigns scores based	Used for consumer
Models 📃	on borrower	& SME loans.
	characteristics.	

• Advanced banks use a **combination of models** to ensure **accurate risk estimation**.

12.2 Premises of Credit Risk Analytics
 Evolution of Credit Risk Analytics
 The Bank for International Settlements (BIS) has
 emphasized the need for rigorous credit risk assessment
 since the Basel-I framework.

Historically, credit risk assessment remained an
 academic concept rather than a practical tool for lenders.

The 2008 Global Financial Crisis was a turning

point, a massive credit defaults occurs worldwide.

• The crisis highlighted the **contagion effect of credit risk** across economies.

This accelerated the development of advanced credit
 risk models

Sevolution of Credit Risk Models Post-2008

Era 🔀	Approach to Credit	Challenges Faced 🛦
	Risk 📊	
Pre-2008	Basic risk	🚫 Risk models were
±	assessment using	not forward-looking.
	historical data.	
2008 Global	Liquidity issues	🗙 No strong
Crisis 😡	triggered massive	mechanisms to predict
	credit defaults.	contagion risk.
Post-2008	Advanced credit	\triangle Over-reliance on
*	risk models using	historical data, which
	statistical analysis.	does not always predict
		future risks.
Present	AI-driven risk	😂 Continuous
(2020s &	analytics & real-	evolution needed due
beyond) 🚀	time credit	to changing economic
	monitoring.	behaviors.

• **Risk models must be forward-looking**, as history often **rhymes but never repeats itself**.

• **"Information asymmetry"** remains a major challenge in predicting **future credit risks**.

🔄 Role of Credit Risk Analytics

📌 Objective:

To differentiate borrowers & exposures based on their
 Probability of Default (PD), Loss Given Default (LGD),
 and Exposure at Default (EAD).

Key Metrics in Credit Risk Analytics:

Metric 🖪	Definition 📝	Formula 🔗
Probability of	Likelihood that a	Estimated using
Default (PD)	borrower will	historical
*	default on	behavioral
	repayment.	patterns.

Loss Given	The percentage of	LGD = 1 - Recovery
Default (LGD)	total exposure lost if	Rate.
\$	default occurs.	
Exposure at	The total value of	EAD = Total Loan
Default (EAD)	outstanding Amount	
*	exposure at default.	Outstanding.
Expected Loss	The anticipated	$EL = PD \times LGD \times$
(EL) 🔍	credit loss over a	EAD.
	period.	

📌 Key Insight:

• Credit risk analytics models must incorporate both historical data & future economic conditions to accurately predict credit risk exposure.

12.3 Advantages of Analytic Models

📌 Advantages of Modern Credit Risk Models

Benefit 🗹

Explanation 🔊

1 Structured &	Uses predefined parameters ,	
Transparent 📑	ensuring clarity & accuracy in	
	predictions.	
2 Mathematical	Leverages quantitative models	
Precision 📊	like probability theory for	
	accurate analysis.	
3 Easy Implementation	Widely available platforms (e.g.,	
1	Excel, Python, SAS) enable quick	
	adoption.	
4 Fast & Accurate	Reduces delays & ambiguities,	
Decision-Making 🚀	ensuring precise risk	
	assessment.	
5 Adapts to Digital	Supports big data analysis ,	
Economy 😑	aligning with modern financial	
	behavior.	

📌 Key Learning:

• Credit risk analytics integrates **finance**, **economics**, **and data science**, making it a **multidisciplinary field**.

📌 🔍 Evolution of Risk Analytics: From Statistics to Big

Data

• Traditionally, risk models were **based on sample data**

& extrapolation 📜 .

Big Data & AI 🔄 have transformed risk analysis,

enabling **real-time credit monitoring**.

• Empirical analytics now replaces traditional

statistical assumptions.

Traditional vs. Modern Credit Risk Analytics

Factor 💼	Traditional Credit	Modern Credit Risk
	Risk Analytics 📜	Analytics 🔗
Data Source	Sample-based data	Big Data & real-
11		time analytics
Prediction	Historical	AI-driven
Approach 🔍	extrapolation	predictive
		modeling
Accuracy 🎯	Moderate – relies on	High – accounts
	past trends	for economic
		shifts

Scalability 📈	Limited scalability	Easily integrates
		with digital
		finance

📌 Key Insight:

• Digitalization & Big Data have revolutionized credit risk analytics, making predictions more precise & adaptable.

📌 📃 Credit Risk Analytics Software & Tools

Modern credit risk models rely on software tools for

data processing, visualization, and forecasting 📊 .

Comparison of Credit Risk Analytics Software

Software	Туре 🔍	Key Features 🗹	Challenges 🗙
SAS 🏦	Commercial	User-friendly,	Expensive 💰
		widely used in	
		banking	

Python	Open-	AI & machine	Needs
Q	source	learning support	programming
			expertise 📜
R 🚺	Open-	Statistical	Requires
	source	computing &	technical
		visualization	expertise 속
Matlab	Commercial	Advanced	Costly for
		mathematical	small banks
*		mathematical modeling	small banks
EViews	Commercial	mathematical modeling Time-series	small banks
EViews	Commercial	mathematical modeling Time-series analysis for risk	small banks Less flexible than Python

📌 Key Learning:

• Banks must choose the right software based on data complexity, regulatory requirements, and cost factors.

☆ 12.5 Credit Scoring Models: Advanced Risk

Assessment in Banking

🏦 Evolution of Credit Risk Modeling Under Basel II

The Basel II framework defines three key approaches for

calculating credit risk capital requirements:

Approach 💼	Methodology 🔍	Key Features 🗹
Standardized	External credit	Uses predefined
Approach (SA)	rating agencies	PD values
1	provide ratings.	assigned to risk
		categories.
Foundation	Banks estimate PD	More flexibility
Internal Ratings-	but use regulatory	than SA , but still
Based (F-IRB)	estimates for other	constrained.
Approach 📃	parameters (LGD,	
	EAD, Maturity).	
Advanced	Banks estimate PD ,	Provides
Internal Ratings-	LGD, EAD, and	maximum risk-
	Maturity (M).	sensitive capital

Based (A-IRB)

Approach 🚀

requirement calculation.

% Key Credit Risk Components in Scoring Models

📌 An ideal credit risk model should:

✓ Estimate **Probability of Default (PD)**

✓ Determine Loss Given Default (LGD) 🍈

✓ Calculate Exposure at Default (EAD) [].

✓ Compute Effective Maturity (M) 🟅

✓ Ensure **regulatory compliance for capital**

requirements 📒

Six Stages of Credit Risk Scoring Models 1 Defining the Problem & Scope

Why is it important?

✓ Credit scoring **varies by borrower type** – a **one-size-fits-**

all model doesn't work X.

✓ Banks must design **separate scoring models** for:

For CCP Full Course WhatSapp at 8360944207		
Segment 💼	Borrower Type	Risk Factors
	99	Considered 🛦
Corporate	Large	Financial ratios, cash
Lending 📳	companies,	flow, industry risk.
	institutions	
Retail Lending	Individuals,	Income stability,
	consumers	credit history,
		employment.
Microfinance 🔞	Small	Alternative credit
	businesses,	data, repayment
	MSMEs	behavior.
Infrastructure	Long-term	Government policies,
Lending	projects	execution risks.

2 Data Collection & Preprocessing

Data Sources for Credit Scoring Models:
 Internal Data – Borrower's past repayment history,

transaction behavior.

✓ **Peer Data** – Similar businesses/individuals for

comparative analysis.

✓ Industry Data – Sector performance benchmarks & trends.

✓ Macroeconomic Data – National/global indicators like

GDP, inflation, interest rates.

✓ Alternative Data (Big Data) – Social media activity,

payment platforms, utilities.

📌 Data Structuring:

✓ Vertically – Across time series (historical trends).

✓ Horizontally – Across geographies & industries.

✓ **Correlated Data** – Relating economic conditions to borrower behavior.

3 Developing the Analytical Model

What is a Credit Risk Model?

✓ A predefined framework that consistently assesses borrower risk.

✓ Uses **predictive analytics** to evaluate risk **over time**.

***** Key Model Types:

Model Type 📊	Purpose 🎯	Application 💼
Logistic	Predicts PD based	Used for scoring
Regression 📉	on historical	retail & SME
	default patterns.	loans.
Machine	Identifies risk	Applied for real-
Learning (AI-	patterns using	time risk
based models)	large-scale data.	monitoring.
based models)	large-scale data.	monitoring.
based models)	large-scale data. Runs multiple	monitoring . Used for
based models) Monte Carlo Simulations	large-scale data. Runs multiple simulations to	monitoring. Used for portfolio-level
based models) Monte Carlo Simulations	large-scale data. Runs multiple simulations to stress-test risk	monitoring. Used for portfolio-level risk evaluation.

4 Backtesting the Model

+ Objective:

- ✓ Ensure historical data aligns with model predictions.
- ✓ Compare model outputs with **known credit events**.

✓ Steps in Backtesting:

1 Select historical events where default outcomes are known.

2 Feed past data into the model.

- 3 Compare predicted vs. actual outcomes 📊 .
- 4 **Refine parameters** if deviations exist.

5 Stress Testing & Scenario Analysis

Why is this important?

✓ Tests model resilience under worst-case economic

scenarios.

✓ Key Stress Scenarios:

Scenario 🕟	Possible Impact on Credit Risk 🔛
Economic	Higher default rates , lower
Recession 📉	repayment capacity.
Rising Interest	Increased EMIs , lower loan
Rates 💰	affordability.
Stock Market Crash	Corporate defaults increase .
11	

Pandemic-like	Mass unemployment, economic
Shocks 💾	slowdown.

6 Regulatory Capital Calculation & Compliance

📌 Final Step:

✓ Ensure the model aligns with **Basel II/III capital**

adequacy requirements 📜 .

✓ Integrate **real-time updates** for new **central bank**

regulations.

✓ Modern Credit Risk Models Must:

✓ Automate end-to-end data processing & risk

calculations 🔄

✓ Allow seamless adaptation to regulatory changes .
 ✓ Provide customized risk estimation tools for dynamic risk assessment .

The Role of Fintech in Credit Risk Modeling
 How Banks are Leveraging Fintech?
 Some banks launch in-house Fintech startups ?
 Others partner with Fintech firms \$\$ to integrate AI-driven risk models.

_	
Technology 📃	Application in Credit Scoring 🖪
Python, R, SAS 过	AI-driven predictive analytics, big
	data processing.
Machine Learning	Identifies borrower patterns &
(ML) 🖭	fraud detection.
Blockchain 🗱	Creates tamper-proof credit
	history.
Cloud Computing 📥	Enables real-time credit risk
	evaluation.

Q Technologies Used in Modern Credit Risk Modeling