

M = 2000 / 0 = 600M = 100 CAIIB with ASHISH

Q3: A Bank calculates that its individual savings accounts are normally distributed with a mean of Rs 2000 and standard deviation of Rs 600. If the bank takes a random sample of 100 accounts, what is the probability that the sample mean will lie between Rs 1900 and

HVHRVAHINGCOVHRHD

Q5: Find the median

C.I.	5-9	10-14	15-19	20-24	25-29
Freq	16	18	20	32	14

HUHRABINGCOURTD

Q7: Find the Mean deviation and coefficient of mean deviation:

C.I.	10-20	20-30	30-40	40-50	50-60
Freq	16	18	20	32	14

M.D $\frac{\overline{f} x_i - \overline{x} }{n}$, Coefficient of	of mean Deviahm= MD Mean
(·I f X) fx	\overline{x} $f(x_i-\overline{x}) \ge f_x$
lo-20 16 × 15 240 20-30 18 × 25 450	A 198
30-40 20 × 35 700	31 20
40-50 50 × 45 14 So - 60 14 × 55 770	36 266
ZF 100 ZFx 3600	1108
$\overline{\chi} = \overline{24n} = \frac{3600}{100} = 36$	
$MD = \sum F[x_i - \overline{x}] = 1$	108 z 11.08
	100
$ \begin{array}{c} \text{Loff}_{MD} = \frac{1}{2} \frac{1}{100} = \frac{1}{36} \end{array} $	= 30.77 %
CAIIB EARLY BIRD M	IAHA PACK

Q8: Find Standard Deviation and Coefficient of Variation for the following data: 4, 5, 8, 2, 3, 6. $(\underline{\chi}-\overline{\chi})^{\perp}$ franced **()** = $\overline{2f_{j}(x_{j}-z)^{2}}$ 2 dota (0V 2 0 x МАНА МАНА РАСК Valid till Exams

EN HRY A HING GOVERED

Q9: Calculate the correlation coefficient for the following datasets.

X	51	55	78	63	61	89	77		
У	58	62	57	61	57	82	58		
	X	y	X ²	y2	хy				
	51	58							
	55	62							
	78	57							
	T								
	L L		MAH		HA P	ACK			
								2)	
		Ξ/	R			BIR	RD		
			Val	id til	. Exa	ns			

HUHRABINGCOURTHD

$\gamma = \frac{\sum xy}{N} - \frac{1}{N}$	x.y	بلا) من CA	ッ) AIIB w 一	ith AS	HISH	= <u>29898</u> - (7.7) × (2.14) 33250_(7.7) ²
$\left[\frac{\Sigma \chi^2}{\Lambda} - (\bar{\chi})\right]$	2 2	₩ 1/2 -(7 1/2) ² 0 y	V ²	xy	V 7
J N Vr	51	58	2601	3364	2958	27515 - (09.14) 7
x = 474=67.7	55	62	3025	3844	3410	= A27114_ 4207.69
7	78	57	6084	3249	4446	
$y = \frac{435}{5} = 6a^2 / 4$	63	61	3969	3721	3843	J 4750- 4584.67
7	61	57	3721	3249	3477	3930.7-3861.32
	89	82	7921	6724	7298	> 63.45 60
	77	58	5929	3364	4466	12.85× 8.32 + 0y
	474	435 🕥	33250	27515	29898	0x= 63.45 = 0.593
	1					106.95

No perfect direct retainship

HVHRVAHINGCOVHRHD

Q11. Calculate Seasonal Index for years.

HUHRAFINGCOUFRED

The Poisson distribution is a way to model how often an event happens in a fixed interval of time or space, under these simple conditions:

- 1. Events occur one at a time (you can't have two events happening at exactly the same instant).
- 2. The average rate is constant (e.g., you get on average 3 phone calls per hour, every hour).
- 3. Events happen independently (one call doesn't make another call more or less likely).

МАНА МАНА РАСК

EARLY

HUHRARINGCOURRHD

Valid till Exams

Q13. Normal population of 1000 employees has mean income Rs.

800 per day and variance 400, Find no. of employees where income

- a) Establish an interval for the average price of the TV so that she can be 68.3 percent certain that the population mean lies within this interval
- b) Establish an interval for the average price of the TV so that she can be 95.5 percent certain that the population mean lies within this

$$\sigma_{\chi} = \frac{\sigma}{\sqrt{n}} = \frac{615}{\sqrt{125}} = \frac{55}{\sqrt{55}} = \frac{3856 \pm 10\pi}{3856 \pm 55} = \frac{66.3\times}{3856 \pm 55}$$

$$3856 \pm 90\pi$$

$$3856 \pm 90\pi$$

$$3856 \pm 90\pi$$

$$3256 \pm 90\pi$$

$$3256 \pm 90\pi$$

$$3266 - 3146 = 95.5\pi$$

	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.0000	.0040	.0080	.0120	.0160	.0199	.0239	.0279	.0319	.0359
0.1	.0398	.0438	.0478	.0517	.0557	.0596	.0636	.0675	.0714	.0753
0.2	.0793	.0832	.0871	.0910	.0948	.0987	.1026	.1064	.1103	.1141
0.3	.1179	.1217	.1255	.1293	.1331	.1368	.1406	.1443	.1480	.1517
0.4	.1554	.1591	.1628	.1664	.1700	.1736	.1772	1808	1844	1879
0.5	.1915	.1950	.1985	.2019	.2054	.2088	.2123	.2157	.2190	.2224
0.6	.2257	.2291	.2324	.2357	.2389	.2422	.2454	.2486	.2517	.2549
0.7	.2580	.2611	.2642	.2673	.2704	.2734	.2764	.2794	.2823	.2852
0.8	.2881	.2910	.2939	.2967	.2995	.3023	.3051	.3078	.3106	.3133
0.9	.3159	.3186	.3212	.3238	.3264	.3289	.3315	.3340	.3365	.3389
1.0	.3413	.3438	.3461	.3485	.3508	.3531	.3554	.3577	.3599	.3621
1.1	.3643	.3665	.3686	.3708	.3729	.3749	.3770	.3790	.3810	.3830
1.2	.3849	.3869	.3888	.3907	.3925	.3944	.3962	.3980	.3997	.4015
1.3	.4032	.4049	.4066	.4082	.4099	.4115	.4131	.4147	.4162	.4177
1.4	.4192	.4207	.4222	.4236	.4251	.4265	.4279	.4292	.4306	.4319
1.5	.4332	.4345	.4357	.4370	.4382	.4394	.4406	.4418	.4429	.4441
1.6	.4452	.4463	.4474	.4484	.4495	.4505	.4515	.4525	.4535	.4545
1.7	.4554	.4564	.4573	.4582	.4591	.4599	.4608	.4616	.4625	.4633
1.8	.4641	.4649	.4656	.4664	.4671	.4678	.4686	.4693	.4699	.4706
1.9	.4713	.4719	.4726	.4732	.4738	.4744	.4750	.4756	.4761	.4767
2.0	.4772	.4778	.4783	.4788	.4793	.4798	.4803	.4808	.4812	.4817
2.1	:4821	.4826	:4830	.4834	.4838	.4842	.4846	.4850	.4854	.4857
2.2	.4861	.4864	.4868	.4871	.4875	.4878	.4881	4884	4887	.4890
2.3	.4893	.4896	.4898	.4901	.4904	.4906	.4909	4911	4913	.4916
2.4	4918	.4920	.4922	.4925	.4927	.4929	.4931	4932	4934	.4936
2.5	.4938	.4940	.4941	.4943	.4945	.4946	.4948	.4949	4951	.4952
2.6	.4953	.4955	.4956	.4957	.4959	.4960	.4961	.4962	.4963	.4964
2.7	.4965	.4966	.4967	.4968	.4969	.4970	.4971	.4972	.4973	4974
2.8	.4974	.4975	.4976	.4977	.4977	.4978	.4979	4979	4980	4981
2.9	.4981	.4982	.4982	.4983	4984	4984	4985	4985	4986	4986
3.0	.4987	.4987	.4987	.4988	.4988	.4989	.4989	.4989	.4990	.4990
3.1	.4990	.4991	.4991	.4991	.4992	.4992	.4992	.4992	.4993	,4993
3.2	.4993	.4993	.4994	.4994	.4994	.4994	.4994	.4995	.4995	.4995
3.3	.4995	.4995	.4995	.4996	.4996	.4996	.4996	.4996	.4996	.4997
3.4	.4997	.4997	.4997	.4997	.4997	.4997	.4997	.4997	.4997	.4998
3.5	.4998	.4998	.4998	.4998	.4998	.4998	.4998	.4998	.4998	.4998
3.6	.4998	.4998	.4998	.4999	.4999	.4999	.4999	.4999	.4999	.4999
3.6	.4998	.4998	.4998	.4999	.4999	.4999	.4999	.4999	.4999	.4999

Valid till Exams

EN HENGEDVERED

HAR HINGEOVER HD

Q17: A company reports the following for the year: Not sales Total revenue (Gross Sales) = ₹1,500,000 = 97055 sales - Excise dun = 1502000 - 100000 Excise duty paid = ₹100,000 Cost of goods sold (COGS) = ₹700,000 =140000Operating expenses = ₹300,000 Non-operating surplus (e.g. rent income) = ₹50,000 scles gross profit = M Interest expense = ₹20,000 Tax expense = ₹60,000 (40000 - 70000 **Compute: Net Sales, Gross Profit, Operating Profit, EBIT, Profit** Before Tax, and Profit After Tax AHA PACK Gross profit - OF nerating profit 2 70000 - 300000 = 400000 EBIT = operating projit + Non operation surplus 10000 + 50000 = 4,0000 PBT = EBTT - Z = 45000 - 00000 = 43000= 43000 - 60000 = 370000PBT-Tax 30pm (-CAIIB EARLY BIRD MAHA PACK