# Introduction to Statistics

Understanding quantitative analysis, interpretation, and decisionmaking in modern business and academic contexts



# **Etymology: The Roots of Statistics**

Latin

Statisticum

State affairs

Italian

Statistia

Political state

German

Statistik

Numerical data

**Modern Meaning** 

Quantitative information of human interest



> numerical quaritative

# What Statistics Means Today

Statistics represents quantitative and numerical data used for:

- Systematic calculation
- In-depth analysis
- Evidence-based decision-making



# SYNERGY SPANION STANION STA

# Two Fundamental Types of Data

#### **Qualitative Data**

Descriptive information

Categories and characteristics

Non-numerical attributes

#### **Quantitative Data**

Measurable information —

Numerical values -

Can be calculated —



# **The Statistical Analysis Process**

01 9 St Stope

#### **Collection of Data**

Gathering information from reliable sources and establishing foundation

03 (34)

#### **Analysis**

Applying formulas, charts, and statistical methods to reveal patterns



#### Classification & Tabulation

Organising raw data into structured, comparable formats



#### Interpretation

Drawing conclusions and translating findings into actionable insights



#### **Phase 1: Collection of Data**

The **foundation** of all statistical analysis

- Identify reliable sources
- Ensure data accuracy
- Establish sampling methods
- Document collection process



# Phase 2: Classification & Tabulation


Transform raw data into **organised**, **structured information** 

- Group similar data points together
- Create meaningful categories
- Enable comparison and pattern recognition

### **Phase 3: Analysis of Data**

#### Transform numbers into insights

- Apply statistical formulas
- Create visual representations
- Identify trends and patterns
- Test hypotheses



# Phase 4: Interpretation of Data

The final step: translating analytical results into **meaningful conclusions** and actionable recommendations



### **Why Statistics Matters**



### Business & Economics

Market analysis, forecasting, strategic planning



### Medicine & Healthcare

Clinical trials, disease tracking, treatment efficacy



#### **Weather & Climate**

Prediction models, pattern analysis, forecasting



#### Finance & Banking

Risk assessment, investment decisions, credit evaluation



#### **Sports Analytics**

Performance tracking, strategy optimisation, predictions



#### **Core Functions of Statistics**

#### **Presents Facts Clearly**

Transforms complex information into understandable formats

#### **Simplifies Complexity**

Reduces large datasets into manageable summaries

#### **Enables Comparison**

Facilitates meaningful comparisons across groups and time

#### **Supports Forecasting**

Predicts future trends based on historical patterns

# Statistics in Business & Economics

Essential for strategic decision-making

Demand forecasting

Market trend analysis

Consumer behaviour patterns

\* Competitive intelligence

Resource allocation



#### **Applications in Medicine & Weather**



#### **Medical Research**

Clinical trial design

Disease prediction models

Treatment effectiveness analysis

Epidemiological studies



#### **Weather Forecasting**

Climate pattern analysis

Predictive modelling

Extreme event forecasting

Long-term climate projections





# Finance & Banking Applications

Risk Analysis

Assessing investment risks and market volatility

Credit Evaluation

Determining creditworthiness and loan eligibility

Portfolio Management

Optimising investment portfolios for maximum returns

# **Understanding Statistical Limitations**



#### No Individual Study

Focuses on aggregates, not individual cases

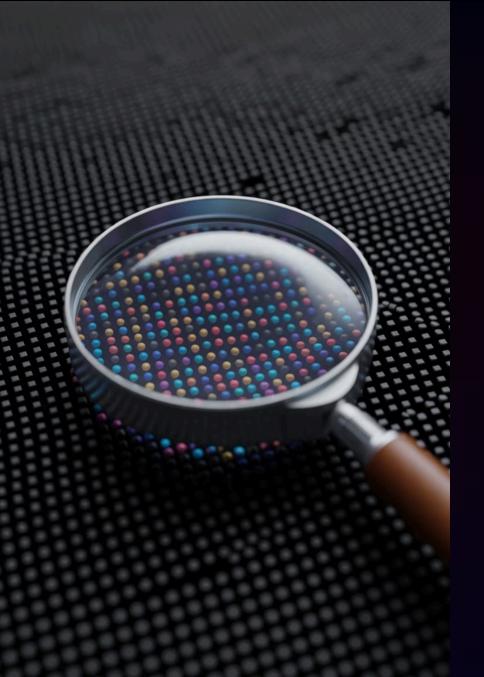


#### **Ignores Qualitative Data**

Cannot analyse non-numerical information



#### **Average-Based Results**


May obscure important variations and outliers



#### **Potential for Bias**

Results depend on collection and analysis methods





# Population vs Sample

#### **Population**

The **entire dataset** of interest

Complete collection of all elements

Often impractical to study fully

N

#### Sample

A **representative subset** of the population

Selected for practical study

Used to make inferences about population





#### **Variates and Attributes**

#### **Variate**

Numerical characteristic that can be measured

Examples: height, weight, temperature, income

Varies quantitatively

#### **Attribute**

Qualitative characteristic that describes categories

Examples: gender, colour, nationality, occupation

Varies qualitatively



#### **Types of Quantitative Variables**

#### **Discrete Variables**

#1

Countable distinct values

Whole numbers only

#### Examples:

- Number of family members
- Cars owned
- · Students in class

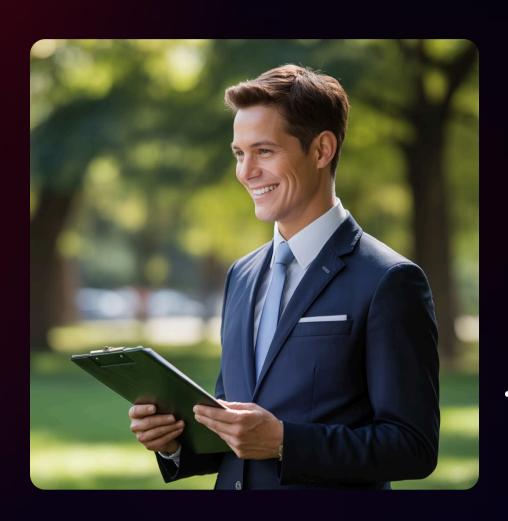
#### **Continuous Variables**

#2

Measurable values on a scale

Any value within range

#### Examples:


- Height and weight
- Temperature
- Time duration

# Mean, median Statistis parameter

# Sample vs Population Measures

| Category   | Mean       | Standard Deviation | Size |
|------------|------------|--------------------|------|
| Population | μ (mu)     | σ (sigma)          | N    |
| Sample     | x⊠ (x-bar) | S                  | n    |

Greek letters denote population parameters; Roman letters denote sample statistics



#### **Primary Data**

Collected firsthand by the researcher

#### **Advantages:**

- Highly accurate and reliable
- Tailored to specific needs
- Up-to-date information

#### **Disadvantages:**

- Time-consuming
- Costly to collect

# **Secondary Data**

Information **previously collected** by other agencies or researchers

#### **Advantages:**

• Quick and economical

Readily accessible

Covers broader scope

#### **Disadvantages:**

May lack precision for specific needs

Potential accuracy concerns

Possible outdated information





# **Primary vs Secondary Data**





### **Classification of Data**

Arranging data into homogeneous groups to reveal patterns

- Identifies relationships between variables
- Facilitates meaningful comparisons

Reveals hidden trends and patterns

#### **Four Bases of Classification**



Based on attributes or qualities

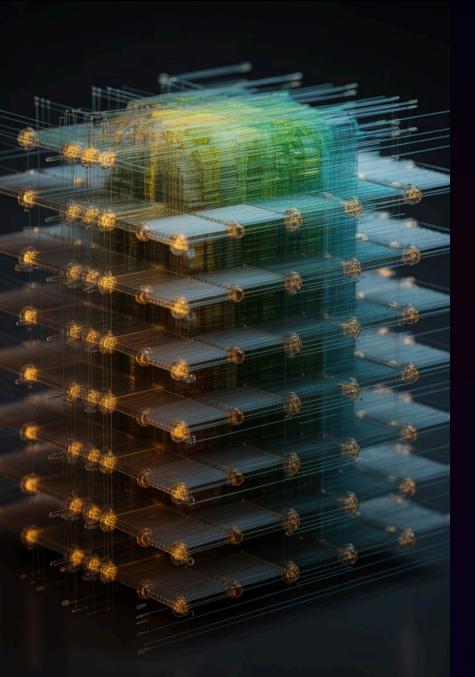
Example: gender, education level

#### **Chronological**

Based on time periods

Example: year, quarter




Based on numerical values

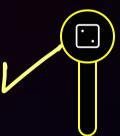
Example: age, income

#### Geographical

Based on location or region

Example: country, city

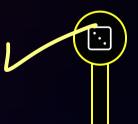



### **Types of Classification**



#### **One-Way Classification**

Data classified by single characteristic


Example: Students by age



#### **Two-Way Classification**

Data classified by **two characteristics** 

Example: Students by age and gender



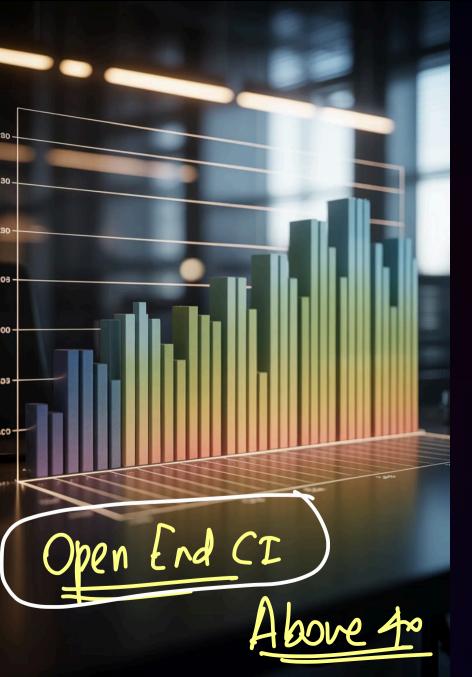
#### **Multi-Way Classification**

Data classified by more than two characteristics

Example: Students by age, gender, and course

# Frequency Distribution




Shows how often each value occurs in a dataset

#### **Used for:**

- Discrete data (exact counts)
- Continuous data (grouped intervals)
- Identifying patterns and outliers
- Understanding data distribution







Class insure

LCL — UCL

# Class Limits & Intervals

1

**Lower Class Limit** 

Smallest value in the class

2

**Upper Class Limit** 

Largest value in the class

3

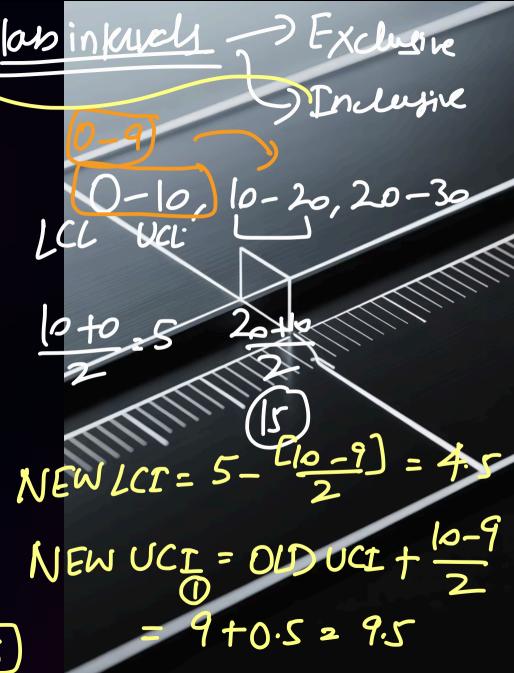
**Class Width** 

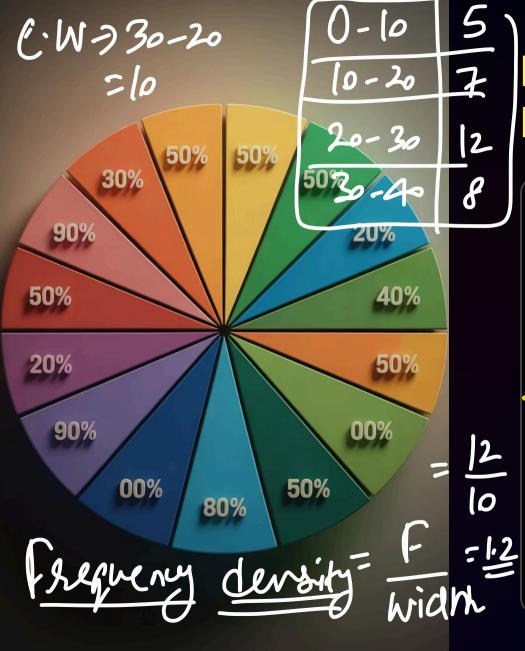
Upper limit – Lower limit

(41,42)

60-69,70-79

# Mid-Value (Class Mark)


The midpoint of a class interval


#### **Formula**

Class Mark = (Lower Limit + Upper Limit) ÷ 2

#### **Purpose**

Represents the central value of each class for calculations





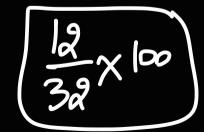
# Relative & Percentage Frequency

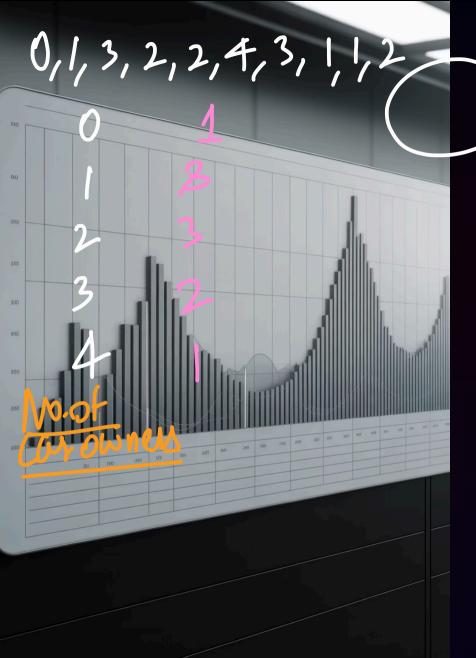
#### **Relative Frequency**

Formula:  $f / \Sigma f$ 

Proportion of observations in each class

Values between 0 and 1





#### **Percentage Frequency**

Formula:  $(f / \Sigma f) \times 100$ 

Percentage of observations in each class

Values between 0% and 100%





# Discrete vs Continuous Frequency Distributions

#### **Discrete Distribution**

Distinct, countable values

Each value listed separately

Example: Number of children per family

#### **Continuous Distribution**

**Grouped into intervals or ranges** 

Data spans a continuum

Example: Height ranges (150-160 cm, 160-170 cm)

2 -- 12

25-2 1

30-36

Both serve as the foundation for calculating further statistical measures like mean, median, and standard deviation