8360944267 Sampling Chapter 2 Module A

The foundation of statistical inference enables us to draw meaningful insights from limited data, making informed decisions in business and research contexts.

What is Sampling?

Sampling involves selecting a representative subset from a larger population to study characteristics without examining every individual.

Cost-Effective

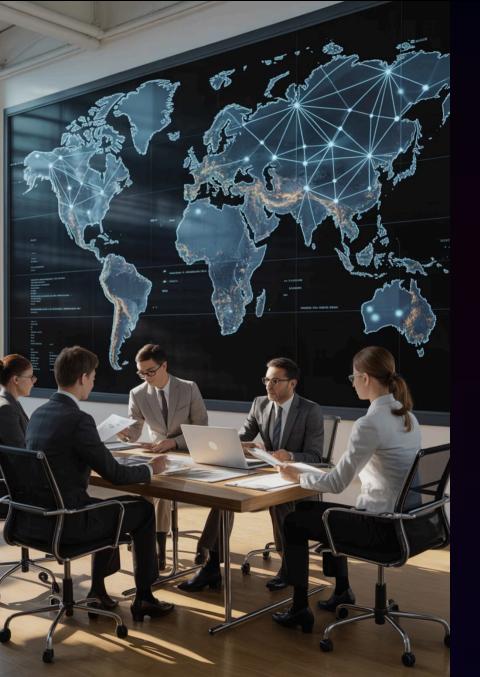
Significantly reduces research expenses and resource allocation

Time-Efficient

Enables rapid data collection and analysis processes

Reliable Results

Provides accurate estimates when executed with proper methodology



Why Sampling Matters

Population Study Efficiency

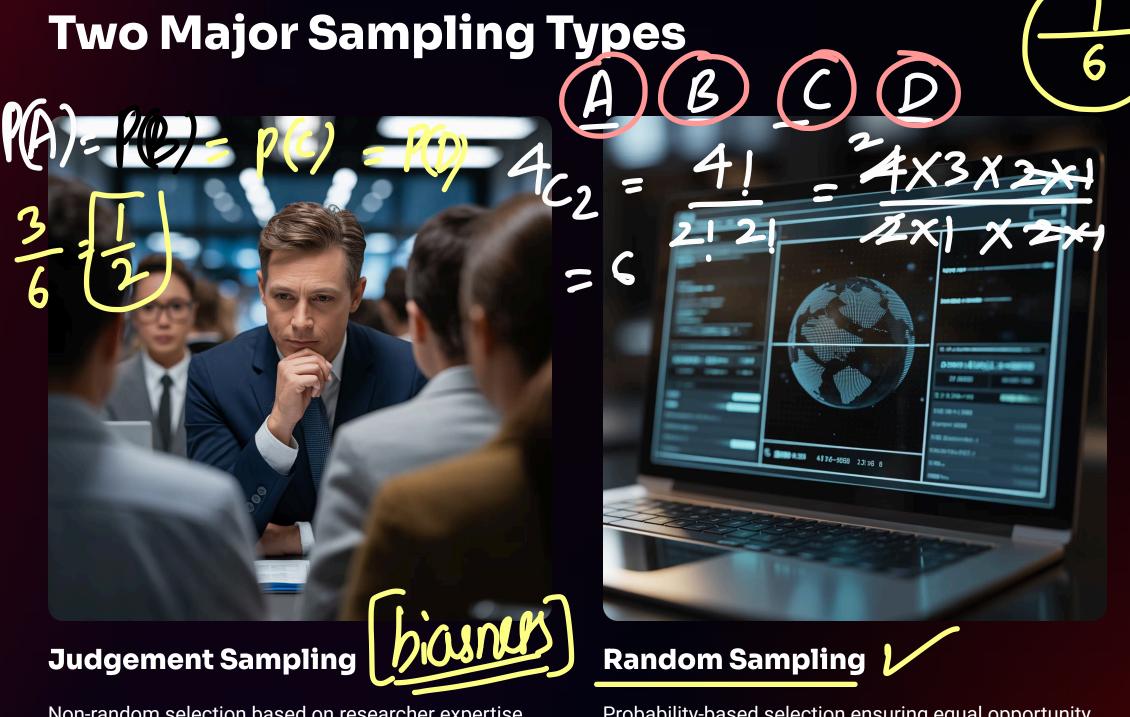
Enables comprehensive analysis of large populations without exhaustive enumeration, making research practically feasible

Resource Optimisation

Dramatically reduces time, financial investment, and human resources required for data collection and analysis

Data-Driven Decision Making

Provides statistically sound foundation for strategic business decisions and policy formulation



Non-random selection based on researcher expertise and discretion

Probability-based selection ensuring equal opportunity for all members

The choice between sampling methods depends fundamentally on research objectives, population characteristics, and desired inference validity.

Judgement or Non-Random Sampling

1

Researcher Discretion

Selection based on expert knowledge and professional judgement of population characteristics 2

Subjective Criteria

Predetermined criteria applied consciously, introducing potential selection bias into the sample

3

Practical Application

Example: selecting experienced bankers with 10+ years tenure for specialised financial research

Random Sampling

Equal Probability

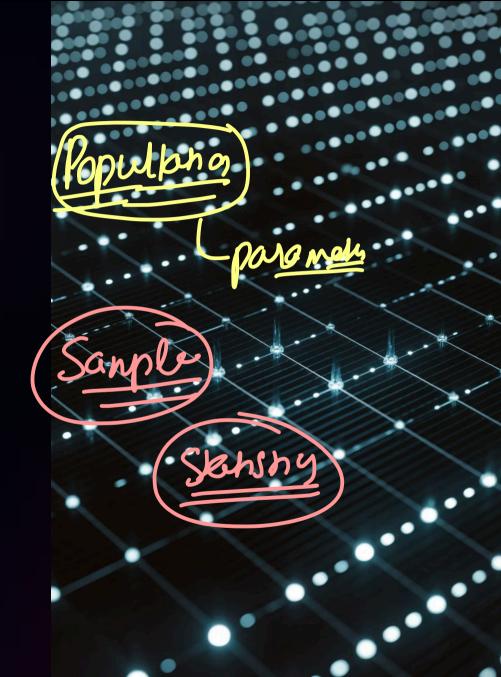
Every population member has identical chance of selection

Unbiased Representation L

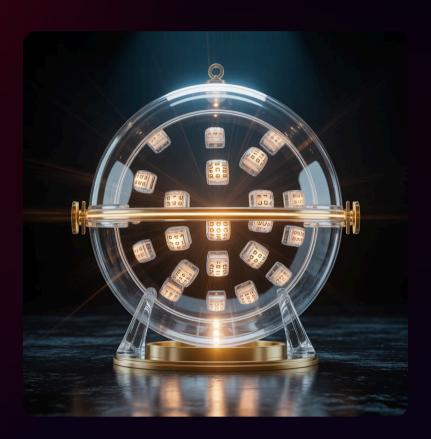
Eliminates systematic selection bias from sampling process

Statistical Foundation

Enables valid inference from sample to population parameters



Simple Random Sampling



Pure Randomisation

The most straightforward probability sampling method where selection occurs entirely by chance.

Each population member has identical likelihood of inclusion

Lottery Mechanism

Comparable to drawing names from a hat or using random number tables

Unbiased Approach

Eliminates researcher influence and selection prejudice

Systematic Random Sampling

01

Calculate Sampling Interval

Determine k = N/n where N is population size and n is desired sample size 02

Random Starting Point

Randomly select first element between 1 and k

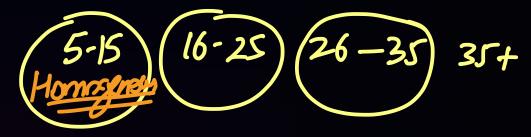
03

Select Every kth Element

Continue selecting at regular intervals throughout the sampling frame

Example: Selecting every 10th bank account record from an ordered database of 10,000 accounts to obtain a sample of 1,000

Stratified Sampling



Ensuring Proportional Representation 6006

Population divided into homogeneous subgroups (strata) based on key characteristics before sampling occurs.

Identify Strata

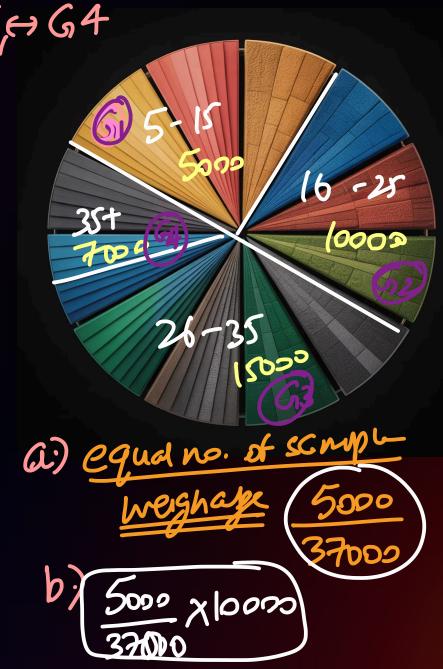
Divide population by relevant characteristics: age, income, region, education level

Sample Each Stratum

Apply random sampling within each subgroup independently

Combine Results

Aggregate data ensuring all population segments represented



2

3

Cluster Sampling

 $C_1 \leftrightarrow C_2$

000

Geographic Division

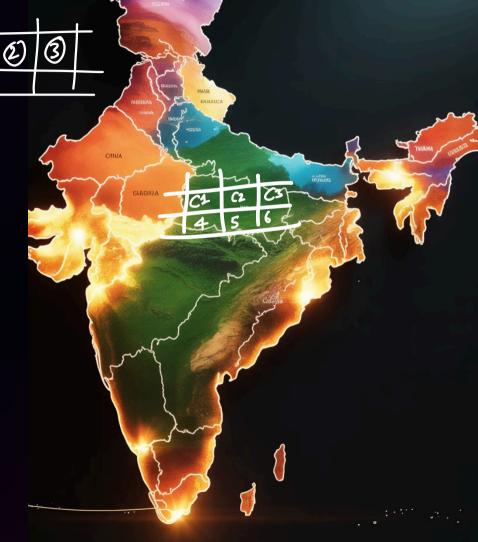
Population naturally divided into clusters (cities, districts, branches) with internal heterogeneity

Random Cluster Selection

Entire clusters chosen randomly rather than individual members

Cost Efficiency

Dramatically reduces travel and administrative costs for geographically dispersed populations



Sampling Distribution

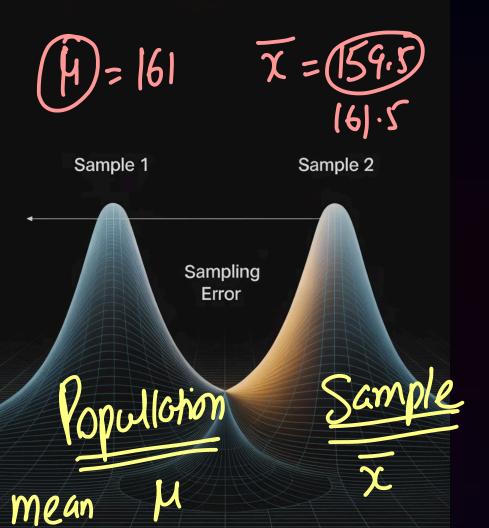
The probability distribution of a sample statistic (such as the mean) obtained from all possible samples of a specific size.

Illustrative Example

Sample	Mean Height (cm)	
Sample A	159 59+162	
Sample B	162	
Sample C	160	
Sample D	163	
Population Mean (μ)	(161) (160.5) (159.5)	W.Loy
4 [(AB) (AC)	Ab

(10000) (509)

Demonstrates natural variation amongst sample means, all clustering around the true population parameter.



Sampling Error

Definition

The difference between a sample statistic and the corresponding population parameter

Sampling Error = $\bar{x} - \mu$

Natural Occurrence

Arises inevitably due to chance variation in random selection processes

Reduction Strategy

Increasing sample size (n) systematically reduces sampling error magnitude

Symmetrical Shape

Perfectly balanced around the central mean value

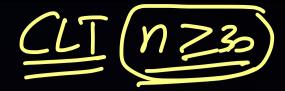
Underpins parametric inferential statistics and hypothesis testing

Central Tendency

Mean = Median = Mode = μ at the distribution's peak

Continuous Range

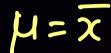
Extends infinitely in both directions, approaching but never touching zero



Central Limit Theorem (CLT)

SD=JVariance = $\frac{1}{2(x-x)}$

The Foundation of Inference



Sample Size Increases

As n grows larger (typically $n \ge 30$)

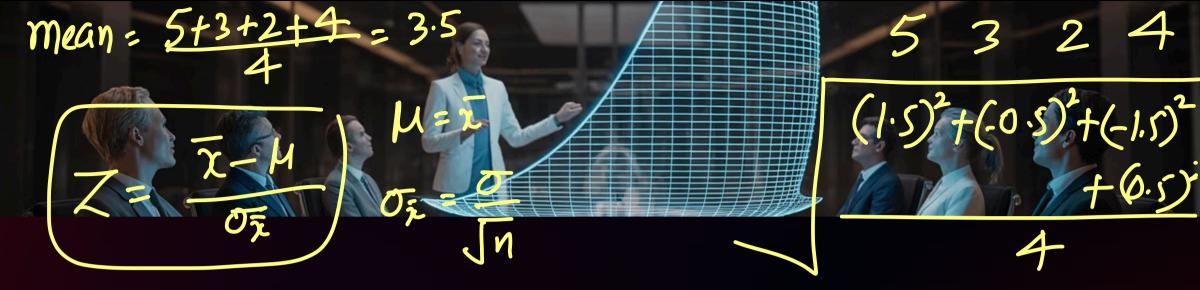
Normality Emerges

Sampling distribution of means becomes approximately normal

Mean Converges

Mean of sampling distribution equals population mean (μ)

This remarkable property holds regardless of the original population's distribution shape.



Why CLT Matters

Enables Statistical Inference

Allows us to make probability statements about population parameters using sample data

Universal Applicability

Works effectively even when population distribution is unknown or non-normal

Hypothesis Testing Core

Forms the theoretical foundation for confidence intervals and significance tests

$0 \leq P(x) \leq 1$

Application: Bank Teller Earnings

Given Parameters

$$H = \overline{x}$$
 $O_{\overline{x}} = \frac{O}{\sqrt{3}} = \frac{2000}{\sqrt{30}} = \frac{365.16}{\sqrt{30}}$
 $O_{\overline{x}} = \frac{O_{\overline{x}}}{\sqrt{30}} = \frac{365.16}{\sqrt{30}}$

- Population mean: μ = ₹19,000
- Population standard deviation: **σ = ₹2,000**

Question

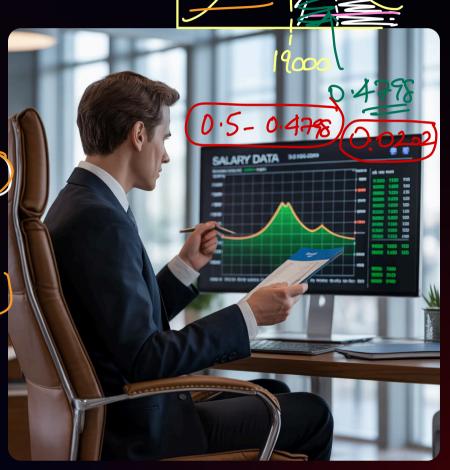
What is the probability that the sample mean exceeds ₹19,750?

Solution

$$SE = rac{\sigma}{\sqrt{n}} = rac{2000}{\sqrt{30}} = 365.15$$

$$Z = rac{19750 - 19000}{365.15} = 2.05$$

Result: $P(\bar{x} > 19,750) = 2.02\%$



Standard Error Concept

Definition

Standard error (SE)
measures the precision of
the sample mean as an
estimate of the population
mean

$$SE = rac{\sigma}{\sqrt{n}}$$

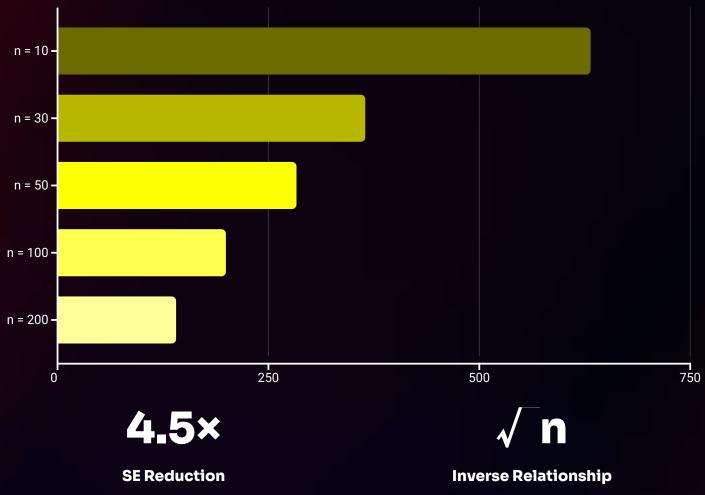
Interpretation

Lower SE indicates sample mean is a more reliable estimator of population mean

Practical Impact

Determines width of confidence intervals and power of hypothesis tests

Relationship Between Sample Size & Standard Error



When sample size increases from 10 to 200

SE decreases proportionally to square root of sample size

Precision Gain

Larger samples yield dramatically improved estimation accuracy

Finite Population Multiplier

Adjustment for Sampling Without Replacement

When sampling from finite populations without replacement, the standard error formula requires modification.

Adjusted Standard Error Formula

$$SE = rac{\sigma}{\sqrt{n}} imes \sqrt{rac{N-n}{N-1}}$$

Where N = population size and n = sample size

Practical Rule: The finite population correction can be ignored when n/N < 0.05 (sample is less than 5% of population)

